Introduction to Bank Stress Testing

Dr. Rebel A. Cole IMF STX Kaye Professor of Finance Florida Atlantic University Boca Raton, FL USA

Financial Sector Stability in Sierra Leone: The Roadmap

Freetown, Sierra Leone July 03, 2017 What is a Bank "Stress Test?"

- A bank "stress test" is a hypothetical "what if" exercise in risk management where we ask how a particular severe, but plausible, scenario would impact a bank's capital adequacy.
 - Provides a forward-looking assessment of risk.
 - Overcomes limitations of historical data.
 - Overcomes limitations of financial models.
 - Facilitates development of contingency plans for dealing with the hypothetical "stress."

Bank Stress Tests

- Stress tests are complements to, but not substitutes for statistical risk-management models, such as Value-at-Risk (VaR), that are based upon the normal distribution.
- VaR: the expected one-day loss that occurs 1 out of 100 times (99% confidence).
- Given 250 trading days per year, this would occur 2.5 times per year.

VaR and the Normal Distribution

In a normal distribution, 99% of the observations fall within 3 standard deviations of the mean.

In this example, the VaR would be: $13.0\% - 3 \times 20.3\% = -47.9\%$

Problems with Value-at-Risk

- Most applications of VaR are based upon historical values and the normal distribution.
 - Normal may not be appropriate.
 - The recent historical experience may not be appropriate.
 - Distributions are assumed stable over time.

Problems with Value-at-Risk

- In addition, there is a wide confidence interval around an estimated tail probability.
- VaR is data intensive: It requires a lot of historical information.
 - Works well for FX, Interest Rate, Equity risks, but not for credit risk.
 - 10 Years:

 Daily: 	2,500 observations
 Monthly: 	120 observations
 Quarterly: 	40 observations
 Annual Data: 	10 observations

Stress Tests as Complements to VaR

- Focus of Stress Tests is on tail probabilities—the "Tails" of the Normal distribution,
 - especially the "left tail"; negative outcomes.
- Highly unlikely, but possible, adverse events and outcomes.
 - It only takes one "outlier" to wipe out a firm's capital completely.
 - No second chances . . .
 - . . . unless you are BofA, Citibank, DB, UBS, etc.

Types of Stress Tests

- Initially, stress tests were used primarily for "market risks":
 - Interest-Rate Risk,
 - Foreign-Exchange Risk,
 - Equities Risk, and
 - Commodities Risk.
- More recently, stress testing has expanded to cover:
 - Credit Risk, and
 - Liquidity Risk.

Types of Stress Tests

- Within the category of credit stress tests, there also are many flavors.
 - Generic
 - Sectoral, e.g. Real Estate
 - Concentration/Large Exposures
 - Interbank
 - Etc.

Types of Stress Tests

- Sensitivity Test:
 - Shock to a single variable, such as the NPL ratio.
- Multi-Factor Tests:
 - Simultaneous shock to two or more variables, such as the NPL ratio and the FX rate.
- Macro Scenario Tests:
 - Simultaneous shock to two or more macro-economic variables that affect the NPL ratio, such as GDP growth and unemployment.
 - "Black Monday" Scenario: Oct. 1987 Market Crash

Types of Stress Tests: Sensitivity vs. Scenario

- Sensitivity Test:
 - What is the impact of a large movement in a financial variable (such as the interest rate or foreign-exchange rate) on the value of a firm's portfolio?
 - Reason for movement is not specified.
 - Lacks historical and economic content.

Types of Sensitivity Tests

- Generic Credit Shock:
 - NPLs (gross of write-offs) increase by
 - 100 percent
 - 200 percent
 - 300 percent
 - Simultaneous increase in provisioning to:
 - 1 percent for standard loans;
 - 20 percent for substandard loans;
 - 50 percent for doubtful; and
 - 100 percent for loss loans.

- Sectoral Credit Shock:
 - Increase in sectoral NPLs (gross of write-offs) in the following sectors:
 - Oil and Gas,
 - Agriculture,
 - Telecom,
 - Real Estate and Construction,
 - General, and General Commerce
 - 100, 200, and 300 percent.

- Sectoral Credit Shock:
 - Deterioration of performing sectoral loans in the following sectors:
 - Oil and Gas,
 - Agriculture,
 - Telecom,
 - Real Estate and Construction,
 - General, and General Commerce
 - 10 percent (mild),
 - 20 percent (medium), and
 - 40 percent (severe).

- Concentration/Large Exposure Shocks:
 - The largest single borrowerdefaults on its loans.
 - Top three single borrowers default on their loans.
 - Top five single borrowers default on their loans.
 - Top 10 single borrowers default on their loans.
 - The largest single group defaults on its loans.
 - The largest three groups default on their loans.
 - The largest five groups default on their loans.

- Reverse Stress Testing/Stress til it breaks:
 - Haircut on performing loans that cause the banking sector CAR average to fall below 10 percent regulatory requirement.
 - Haircut on performing loans that cause 50 percent of the system to fall below 10 percent minimum capital.

- Direct Interest Rate Shocks
 - Parallel upward shift of the LC yield curve by
 - 500 b.p.
 - 1,000 b.p.
 - 1,500 b.p.
 - Parallel downward shift of the LC yield curve by
 - 250 b.p.
 - 500 b.p.
 - 1,000 b.p.
 - Steepening of LC yield curve from 0 to 1000 b.p.
 - Parallel shift of the USD yield curve by 100 b.p.

- Foreign Exchange Shock:
 - The shocks refer to the impact of the LC deprecation against all key currency exposures:
 - 15 percent depreciation of LC.
 - 30 percent depreciation of LC.
 - 40 percent depreciation of LC.

- Equity Shock:
 - Equity price index drops by 40 percent.
 - Equity price index drops by 70 percent.

Types of Stress Tests: Sensitivity vs. Scenario

- Scenario Tests:
 - What is the impact on the value of a firm's portfolio from simultaneous movements in several financial variables, driven by some event,
 - Historical
 - Hypothetical.
 - The tie to a historical/hypothetical event provides historical and economic content

Historical Scenarios

- Model shocks based upon actual extreme historical events:
 - 2008 global financial crisis.
 - 1987 "Black Monday.

Types of Stress Tests: Scenarios

• Example:

The "Black Monday" Scenario (Oct. 1987) when U.S. equities lost 25% of their value on that single day.

What would be the impact of a similar event today, not only for equities, but for other bank exposures?

- Example: The "Black Monday" Scenario
- Assumption: Equities fall by 25% in one day.
- What follows?
 - a downward spike in the interest rates as the Central Bank responds.
 - => Interest-Rate Risk Rises
 - As rates fall so will the value of the dollar.
 - => FX Risk Rises
 - Equity losses hit investors
 - => Credit Risk Rises

Historical Scenarios

- Drawbacks
 - Plausibility of repeating a past scenario is questionable.
 - The financial system and financial institutions change over time.
 - Some instruments, markets, and financial institutions did not exist at the time of the historical event.

Hypothetical Scenarios

- Can be more realistic, particularly if the financial structure has changed considerably over time.
- Allows for a more flexible formulation of potential events.
- Encourages risk managers to be forward-looking.
- "Stress to Failure:" Simulation techniques can be applied to search for scenarios that would cause losses that exceed the threshold.

- 2001 BIS Survey of Stress-Testing Practices at 38 Large Financial Institutions
 - Very few ran such scenarios with multiple simultaneous shocks.
 - Outcome of recent crisis is therefore not very surprising.
 - VaR and the relative calm of the past few years had lulled risk managers into a sense of complacency.

- Shock 1 (mild):
 - Aggregate NPL increase by 50 percent,
 - 15 percent depreciation of LC over 30-day period, and
 - 500 b.p. upward parallel shift of the LC yield curve.

- Shock 2 (severe):
 - Aggregate NPL increase by 100 percent,
 - 30 percent depreciation of LC over 30-day period, and
 - 1,000 b.p. upward parallel shift of the LC yield curve.

- Shock 3 (severe):
 - Aggregate NPL increase by 200 percent,
 - 40 percent depreciation of LC over 30-day period, and
 - 1,500 b.p. upward parallel shift of the LC yield curve.

Macro Stress Testing

- "Macro" stress tests are aggregated versions of individual bank stress tests, often performed by treating the banking system like an individual bank.
 - Macro stress tests focus on the stability of the whole financial system, rather than on the viability of individual firms.
 - Test the sensitivity of the financial system to major shocks in the economic and financial environment.
 - Increased in prominence after onset of the global financial crisis back in 2008.

Complexity of Macro Stress Testing

- Complexity should mirror that of a country's financial system.
 - In less complex systems, sources of risk on bank balance sheets can be readily measured at an aggregate level.
 - A relatively simple mechanical approach can suffice.
 - For more complex systems, participation of banks is essential.
 - Complex risk exposures of large international financial institutions are best assessed using the banks' internal risk-management systems.
 - Today, we will focus on less complex systems.

Coverage of Macro Stress Testing

- What type of financial institutions should be included?
- General rule is to include all systematically relevant institutions and exposures.
 - Commercial Banks
 - Domestic
 - Foreign
 - State-controlled
 - Credit Unions
 - Development Banks

On-vs. Off-Balance Sheet Exposures

- Stress tests based exclusively on balance-sheet positions can be misleading.
- Off-balance-sheet position can quantitatively and qualitatively alter on balance-sheet exposures.
- It may not be clear where credit and market risks reside due to credit derivatives activities of large financial institutions.
- Off-balance-sheet funding vehicles (conduits and SIVs) can also be sources of vulnerabilities.

Identification of major risks and exposures

- Requires detailed knowledge of the country's economic and financial situation.
- Helpful to know the business practices of financial institutions, e.g. the use of funding vehicles.
- The design of stress tests is often an iterative process:
 - Identified risk factors might lead to relatively small impacts, or
 - Other risks originally seen as small may have large impacts if the exposures are substantial.

Why link stress tests to the macro-economy?

- By linking stress tests to the macro economy, we can let an econometric model guide us in how to conduct scenario analysis.
- For example, we can use historical data to measure how changes in GDP growth and the FX rate affect bank NPL ratios.
- We can then choose the size of the credit shocks based upon realworld data.

Macro-Linked Stress Testing

Credit Stress Testing in Practice

- Most credit stress tests follow a basic model.
- Specify a "baseline" that adjusts for under-provisioning, if any.
- Specify a "shock" that leads to a rise in the bank's NPL ratio.
- Increase loan-loan reserves to cover the new NPLs, by transferring capital to LLRs.
- Reduce the bank's capital by amount transferred to LLR.
- Recalculate CAR(s) and assess whether it meets the regulatory minimum capital requirements.

Where Do the Satellite Models Fit?

Example of a Multi-Period Macro Scenario

Satellite Model for NPLs

ί						
Dependent variable:	Independent variables:					
• NPLs	NPLs laggedMACRO:					
	Real GDP growth					
	 Long-term bond yield 					
	 Fiscal variables 					
	• Etc					
Estimation period=2001-2011	• Banks:					
Number of banks: 21 banks Unbalanced panel, small T, large N	 Bank specific variables 					

Satellite Model for ROA

Estimation period=2001-2011 Number of banks: 21 banks Unbalanced panel, small T, large N How macro-linked stress tests work in practice

- Prepare input data
 - NPLs, Profits from Banking Supervision Data
 - Macro variables from Research Dept.
 - Merge by date
- Generate macro scenario forecasts for Macro Variables.

How macro-linked stress tests work in practice

- Estimate Satellite Model.
- Apply coefficient from satellite model to macro forecasts to generate forecasts of NPLs and ROAs for each bank.
- Calculate provisions and new CAR.
- Determine if bank is undercapitalized.

Macro Stress Testing: Second-Round Effects

- Potential **second-round effects** are often ignored:
- Weakened banks might face increased funding costs and deposit withdrawals, which could reduce their profits further.
- Faced with deteriorating credit worthiness, banks might tighten credit, with adverse effects on aggregate demand.

Banks' Responses and Policy Reactions

- Most stress tests assume there is no realignment of portfolios and exposures in response to risk factors
 - Might be valid at short-time horizon
 - If the stress test focuses on one year or more, the assumption of no behavioural response becomes harder to justify.
- Moreover, the policy environment may also change over longer horizons--as monetary and supervisory authorities react to shocks.

Interpreting Results from Stress Tests

- Particularly useful if they are conducted on a regular basis; they can provide information about changes in the risk profile of the system
- But, interpretation has to take account of limitations
 - Stress tests have a large margin of uncertainty about the absolute level of risk that they indicate
 - If the underlying model is mis-specified, the stress test results can be invalid
 - Are unlikely to capture the full range of interactions between risk factors and exposures
 - They typically consider only part of the banks' income generating operations

Public Dissemination of Results

- Ideally, results of the macro stress tests should be disseminated to the public.
- Many countries accomplish this using an annual or semi-annual Financial Stability Report.
- According to a recent IMF working paper, forward-looking stress tests are an important component of Financial Stability Reports, which often are criticized as backwards looking.
- Macro stress tests also are an integral part of the IMF's Financial Stability Assessment Program (FSAP), which typically are made public.

Public Dissemination of Results

	12	Top Down Stress Test								
		System Level			Outlier Banks (CAR < 10%)		Outlier Banks (Core CAR < 6%)		Insolvent Banks	
		CAR	Core CAR	Losses (% of Total Capital)	Number of Outlier Banks	Shares in Total Assets	Number of Outlier Banks	Share in Total Assets	Number of Outlier Banks	
Baseline:		18.5	18.4		1		1		1	
Shock 1:	Aggregate NPLs increases 50 percent, Naira depreciates against all currencies by 15 percent and parallel upward shift of the Naira yield curve by 500 bps	17.9	17.8	3.8	0	0.0	1	0.0	1	
Shock 2:	Aggregate NPLs increases 100 percent, Naira depreciates against all currencies by 30 percent and parallel upward shift of the Naira yield curve by 1000 bps	17.0	16.9	10.9	2	3.9	1	3.9	1	
Shock 3:	Aggregate NPLs increases 200 percent, Naira depreciates against all currencies by 40 percent and parallel upward shift of the Naira yield curve by 1500 bps	14.8	14.7	30.3	4	11.6	3	11.6	2	

Appendix Table 1.6. Nigeria: Sensitivity Analysis—Multi-Factor Shocks

Source: Top Down: CBN and IMF staff calculations.

Public Dissemination of Results

- Public dissemination presents difficulties with regard to confidentiality and interpretation of results.
 - Some observers may interpret the chosen scenarios as reflecting an "official view" on the most likely or the most problematic scenarios.
 - Disclosure of summary information has proven informative for market participants and individual institutions wishing to benchmark their own results against those of their competitors
 - Disclosure of the scenarios can also raise awareness of different risks for institutions to consider and incorporate into their own stress-testing programs.

Thank You!

Questions . . . ?